Search
Bacterial plant diseases and plant proteostasis
People
People
General research support
Postdoctoral Researchers
PhD Students
Undergrad or Master Students
Overview
Our team is interested in understanding the molecular mechanisms that control the interaction between pathogenic bacteria and plants to develop sustainable strategies to prevent and fight bacterial invasions in the field.
Research in the lab focuses on 2 main areas:
Understanding the genetic determinants of bacterial wilt: Bacterial wilt caused by the wide-host range pathogen Ralstonia solanacearum is a devastating disease affecting over 200 plant species from disparate families including potato, tomato, peanut, eucalyptus, clove, etc. Management of bacterial wilt remains difficult due to R. solanacearum aggressiveness, its broad geographical distribution and its long persistence in soil and water. We study the R. solanacearum genes that are essential to complete its life cycle both inside and outside its plant hosts. These include genes that control bacterial virulence and the functions required for its long survival in soil. We expect to identify key bacterial determinants that can be used as targets to control the disease
Understanding the molecular mechanisms that control defense responses to bacterial invasion in plants: resistance to R. solanacearum is multigenic and regulated by very complex characters. In the lab we study the mechanisms underlying inducible physico-chemical barriers posed by resistant plants to R. solanacearum as well as the protease complement involved in neutralizing the bacterium in the apoplast and xylem of infected plants. We also study the mechanisms regulating the hypersensitive response in plants, in particular the role of metacaspases as cell death proteases and a proteostasis regulators.
Selected Publications
Zhang W, Planas-Marquès M, Mazier M, Šimkovicová M, Rocafort M, Mantz M, Huesgen PF, Takken FLW, Stintzi A, Schaller A, Coll NS, Valls M.
The tomato P69 subtilase family is involved in resistance to bacterial wilt.
(2024) Plant J.,Apr;118(2):388-404. doi: 10.1111/tpj.16613. Epub 2023 Dec 27. PMID: 38150324
de Pedro-Jové R, Corral J, Rocafort M, Puigvert M, Azam FL, Vandecaveye A, Macho AP, Balsalobre C, Coll NS, Orellano E, Valls M.
Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats.
(2023) PLoS Pathog. ,Dec 19;19(12):e1011888. doi: 10.1371/journal.ppat.1011888. eCollection 2023 Dec. PMID: 38113281 Free PMC article.
Ruiz-Solaní N, Salguero-Linares J, Armengot L, Santos J, Pallarès I, van Midden KP, Phukkan UJ, Koyuncu S, Borràs-Bisa J, Li L, Popa C, Eisele F, Eisele-Bürger AM, Hill SM, Gutiérrez-Beltrán E, Nyström T, Valls M, Llamas E, Vilchez D, Klemenčič M, Ventura S, Coll NS.
Arabidopsis metacaspase MC1 localizes in stress granules, clears protein aggregates, and delays senescence.
(2023) Plant Cell. ,Sep 1;35(9):3325-3344. doi: 10.1093/plcell/koad172. PMID: 37401663 Free PMC article.
Pitsili E, Rodriguez-Trevino R, Ruiz-Solani N, Demir F, Kastanaki E, Dambire C, de Pedro-Jové R, Vercammen D, Salguero-Linares J, Hall H, Mantz M, Schuler M, Tuominen H, Van Breusegem F, Valls M, Munné-Bosch S, Holdsworth MJ, Huesgen PF, Rodriguez-Villalon A, Coll NS.
A phloem-localized Arabidopsis metacaspase (AtMC3) improves drought tolerance.
(2023) New Phytol. ,Aug;239(4):1281-1299. doi: 10.1111/nph.19022. Epub 2023 Jun 15. PMID: 37320971
Salguero-Linares J, Serrano I, Ruiz-Solani N, Salas-Gómez M, Phukan UJ, González VM, Bernardo-Faura M, Valls M, Rengel D, Coll NS.
Robust transcriptional indicators of immune cell death revealed by spatiotemporal transcriptome analyses.
(2022) Mol Plant. ,Jun 6;15(6):1059-1075. doi: 10.1016/j.molp.2022.04.010. Epub 2022 May 2. PMID: 35502144 Free article
Kashyap A, Jiménez-Jiménez ÁL, Zhang W, Capellades M, Srinivasan S, Laromaine A, Serra O, Figueras M, Rencoret J, Gutiérrez A, Valls M, Coll NS.
Induced ligno-suberin vascular coating and tyramine-derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato.
(2022) New Phytol.,May;234(4):1411-1429. doi: 10.1111/nph.17982. Epub 2022 Feb 13. PMID: 35152435 Free article.
de Pedro-Jové R, Puigvert M, Sebastià P, Macho AP, Monteiro JS, Coll NS, Setúbal JC, Valls M.
Dynamic expression of Ralstonia solanacearum virulence factors and metabolism-controlling genes during plant infection.
(2021) BMC Genomics.,Mar 9;22(1):170. doi: 10.1186/s12864-021-07457-w. PMID: 33750302 Free PMC article.
Alonso-Díaz A, Satbhai SB, de Pedro-Jové R, Berry HM, Göschl C, Argueso CT, Novak O, Busch W, Valls M, Coll NS.
A genome-wide association study reveals cytokinin as a major component in the root defense responses against Ralstonia solanacearum.
(2021) J Exp Bot. ,Mar 29;72(7):2727-2740. doi: 10.1093/jxb/eraa610. PMID: 33475698 Free PMC article.
Planas-Marquès M, Kressin JP, Kashyap A, Panthee DR, Louws FJ, Coll NS, Valls M.
Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato.
(2020) J Exp Bot.,Mar 25;71(6):2157-2171. doi: 10.1093/jxb/erz562. PMID: 32211785 Free PMC article.
Lu H, Lema A S, Planas-Marquès M, Alonso-Díaz A, Valls M, Coll NS.
Type III Secretion-Dependent and -Independent Phenotypes Caused by Ralstonia solanacearum in Arabidopsis Roots.
(2018) Mol Plant Microbe Interact. ,Jan;31(1):175-184. doi: 10.1094/MPMI-05-17-0109-FI. Epub 2017 Oct 2. PMID: 28840786 Free article.
Lema Asqui S, Vercammen D, Serrano I, Valls M, Rivas S, Van Breusegem F, Conlon FL, Dangl JL, Coll NS.
AtSERPIN1 is an inhibitor of the metacaspase AtMC1-mediated cell death and autocatalytic processing in planta.
(2019) New Phytol. ,May;218(3):1156-1166. doi: 10.1111/nph.14446. Epub 2017 Feb 3. PMID: 28157265 Free article.