Bioengineering lignocellulosic biomass in maize

Group Leaders
David Caparrós
CRAG Researcher
Group Members
Bioengineering lignocellulosic biomass in maize group

Researchers

Postdoctoral Researchers

PhD Students

Undergrad or Master Students

Overview

Maize is one of the major crops worldwide and has been predominantly used as a forage crop due to its high nutritional value. In recent years, to substitute the contaminant fossil fuels, maize has been also used as source for the production of bioethanol. Initially, bioethanol has been produced from sugars accumulated in the seeds (first generation biofuel), directly competing with fields dedicated to food and feed. A solution to avoid this contest is the use of the maize stover (lignocellulosic biomass) but its huge amount of cellulose is nowadays discarded due to its interaction with the lignin polymer. These interactions imply that an important percentage of these polysaccharides are not digested by ruminants or extracted for the production of cellulosic bioethanol (secondary generation biofuel), thus, reducing the nutritional and energetic values of this biomass.

Our main interests are addressed to understand how the modification of lignin genes affects the content and composition of the lignin and polysaccharides polymers within the maize cell walls. This knowledge is essential for further undertaking new biotechnological approaches leading to new maize lines with improved nutritional and energetic values of the lignocellulosic biomass, thus making its high polysaccharides content available for these industrial proposes. 

Selected Publications

Calderone S., Mauri N., Manga-Robles A., Fornalé S., García-Mir L., Centeno ML., Sánchez-Retuerta C., Ursache R., Acebes JL., Campos N., García-Angulo P., Encina A. and Caparrós-Ruiz D.
Diverging cell wall strategies for drought adaptation in two maize inbreds with contrasting lodging resistance.
(2024) Plant, Cell & Environment. 2024 Feb 5. doi: 10.1111/pce.14822.

Vélez-Bermúdez IC., Salazar-Henao JE., Riera M., Caparros-Ruiz D. and Schmidt W.
Protein and antibody purification followed by immunoprecipitation of MYB and GATA zinc finger–type maize proteins with magnetic beads.
(2022) STAR Protocols, 2022 Jun 7;3(2):101449. doi: 10.1016/j.xpro.2022.101449. eCollection 2022 Jun 17.

Kubra G., Khan M., Munir F., Gul A., Shah T., Hussain A., Caparrós-Ruiz D. and Amir R. 
Expression Characterization of Flavonoid Biosynthetic Pathway Genes and Transcription Factors in Peanut under Water Deficit Condition.  
(2021) Front. Plant Sci. doi: 10.3389/fpls.2021.680368. 

Manga-Robles A., Santiago R., Malvar R.A., Moreno-González V., Fornalé S., López I., Centeno M.L., Acebes J.L., Álvarez J.M., Caparros-Ruiz D., Encina A. and García-Angulo P.  
Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance.  
(2021) Plant Sci. Jun;307:110882 doi: 10.1016/j.plantsci.2021.110882 

Rebaque D., Martínez-Rubio R., Fornalé S., García-Angulo P., Alonso-Simón A., Álvarez JM., Caparros-Ruiz D., Acebes JL., Encina A. 
Characterization of structural cell wall polysaccharides in cattail (Typha latifolia): Evaluation as potential biofuel feedstock. 
(2017) Carbohydrate Polymers 175 679-688 

Fornalé S., Rencoret J., García-Calvo L., Encina A., Rigau J., Gutiérrez A., del Río JC., Caparros-Ruiz D. 
Changes in cell wall polymers and degradability in maize mutants lacking 3′- and 5′-O-Methyltransferases involved in lignin biosynthesis. 
(2017) Plant & Cell Physiology 58: 240-255

Vélez-Bermúdez IC., Salazar-Henao JE., Fornalé S., López-Vidriero I., Franco-Zorrilla JM., Grotewold E., Gray J., Solano R., Schmidt W., Pagés M., Riera M., Caparros-Ruiz D. 
A MYB/ZML complex regulates wound-induced lignin genes in maize. 
(2015) The Plant Cell 27: 3245-3259

Fornalé S., Rencoret J., Garcia-Calvo L., Capellades M., Encina A., Santiago R., Rigau J., Gutiérrez A., Del Río JC., Caparros-Ruiz D. 
Cell wall modifications triggered by the down-regulation of Coumarate 3-hydroxylase-1 in maize. 
(2015) Plant Science 236:272-282

Fornalé S., Lopez E., Salazar-Henao JE., Fernández-Nohales P., Rigau J., Caparros-Ruiz D.
AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana 
(2014) Plant & Cell Physiology 55: 507-516.

Gray J., Caparros-Ruiz D., Grotewold E. 
Grass phenylpropanoids: Regulate before using! 
(2012) Plant Science 184:112-120

Fornalé S., Capellades M., Encina A., Wang K., Irar S., Lapierre C., Ruel K., Joseleau JP., Berenguer J., Puigdomènech P., Rigau J.,  Caparrós-Ruiz D.
Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants downregulated for cinnamyl alcohol dehydrogenase
(2012) Molecular Plant 5: 817-830

Mélida H., Caparrós-Ruiz D., Alvarez J., Acebes JL., Encina A. 
Deepening into the proteome of maize cells habituated to the cellulose biosynthesis inhibitor dichlobenil. 
(2011) Plant Signaling & Behaviour 6: 1-4

Fornalé S., Shi X., Chai C., Encina A., Irar S., Capellades M., Fuguet E., Torres JL., Rovira P., Puigdomènech P., Rigau J., Grotewold E., Gray J. & Caparrós-Ruiz D. 
ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. 
(2010) The Plant Journal 64: 633-644

Mélida H., Encina A., Álvarez JM., Acebes JL. & Caparrós-Ruiz D.  
Unravelling the biochemical and molecular networks involved in maize cells habituation to the cellulose biosynthesis inhibitor dichlobenil. 
(2010) Molecular Plant 3: 842-853